151 research outputs found

    Hurricane-induced rainfall is a stronger predictor of tropical forest damage in Puerto Rico than maximum wind speeds

    Get PDF
    Projected increases in cyclonic storm intensity under a warming climate will have profound effects on forests, potentially changing these ecosystems from carbon sinks to sources. Forecasting storm impacts on these ecosystems requires consideration of risk factors associated with storm meteorology, landscape structure, and forest attributes. Here we evaluate risk factors associated with damage severity caused by Hurricanes María and Irma across Puerto Rican forests. Using field and remote sensing data, total forest aboveground biomass (AGB) lost to the storms was estimated at 10.44 (±2.33) Tg, ca. 23% of island-wide pre-hurricane forest AGB. Storm-related rainfall was a stronger predictor of forest damage than maximum wind speeds. Soil water storage capacity was also an important risk factor, corroborating the influence of rainfall on forest damage. Expected increases of 20% in hurricane-associated rainfall in the North Atlantic highlight the need to consider how such shifts, together with high speed winds, will affect terrestrial ecosystems

    A Well-Resolved Phylogeny of the Trees of Puerto Rico Based on DNA Barcode Sequence Data

    Get PDF
    Background: The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarilydefined species pools. Methodology/principal findings: We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with PHYLOMATIC (proportion of internal nodes resolved:constrained ML = 74%, unconstrained ML = 68%, PHYLOMATIC = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and PHYLOMATIC phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. PHYLOMATIC) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance: With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning

    Edaphic heterogeneity and the evolutionary trajectory of Amazonian plant communities

    Get PDF
    We investigated how the phylogenetic structure of Amazonian plant communities varies along an edaphic gradient within the non-inundated forests. Forty localities were sampled on three terrain types representing two kinds of soil: clayey soils of a high base cation concentration derived from the Solimões formation, and loamy soils with lower base cation concentration derived from the Içá formation and alluvial terraces. Phylogenetic community metrics were calculated for each locality for ferns and palms both with ferns as one group and for each of three fern clades with a crown group age comparable to that of palms. Palm and fern communities showed significant and contrasting phylogenetic signals along the soil gradient. Fern species richness increased but standard effect size of mean pairwise distance (SES.MPD) and variation of pairwise distances (VPD) decreased with increasing soil base cation concentration. In contrast, palm communities were more species rich on less cation-rich soils and their SES.MPD increased with soil base cation concentration. Species turnover between the communities reflected the soil gradient slightly better when based on species occurrences than when phylogenetic distances between the species were considered. Each of the three fern subclades behaved differently from each other and from the entire fern clade. The fern clade whose phylogenetic patterns were most similar to those of palms also resembled palms in being most species-rich on cation-poor soils. The phylogenetic structuring of local plant communities varies along a soil base cation concentration gradient within non-inundated Amazonian rain forests. Lineages can show either similar or different phylogenetic community structure patterns and evolutionary trajectories, and we suggest this to be linked to their environmental adaptations. Consequently, geological heterogeneity can be expected to translate into a potentially highly diverse set of evolutionarily distinct community assembly pathways in Amazonia and elsewhere.</p

    Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed-to-seedling transition in tropical trees

    Get PDF
    The seed-to-seedling transition constitutes a critical bottleneck in the life history of plants and represents a major determinant of species composition and abundance. However, we have surprisingly little knowledge regarding the forces driving this ontogenetic transition. Here we utilize information regarding organismal function to investigate the strength of intra- and interspecific negative density dependence during the seed-to-seedling transition in Puerto Rican tree species. Our analyses were implemented at individual sites and across an entire 16-ha forest plot, spanning 6 years. The functional richness of seedling assemblages was significantly lower than expected given the seed assemblages, but the functional evenness was significantly higher than expected, indicating the simultaneous importance of constraints on the overall phenotypic space and trait differences for successful transitions from seed to seedling. The results were consistent across years. Within species, we also found evidence for strong intraspecific negative density dependence, where the probability of transition was proportionally lower when in a site with high conspecific density. These results suggest that filtering of similar phenotypes across species and strong negative density dependence within and among species are simultaneously driving the structure and dynamics of tropical tree assemblages during this critical life-history transition

    Height–diameter allometry for a dominant palm to improve understanding of carbon and forest dynamics in forests of Puerto Rico

    Get PDF
    Tropical forests play a major role in the global carbon cycle but their diversity and structural complexity challenge our ability to accurately estimate carbon stocks and dynamics. Palms, in particular, are prominent components of many tropical forests that have unique anatomical, physiological, and allometric differences from dicot trees, which impede accurate estimates of their aboveground biomass (AGB) and population dynamics. We focused on improving height estimates and, ultimately, AGB estimates for a highly abundant palm in Puerto Rico, Prestoea acuminata. Based on field measurements of 1003 individuals, we found a strong relationship between stem height and diameter. We also found some evidence that height–diameter allometry of P. acuminata is mediated by various sources of environmental heterogeneity including slope and neighborhood crowding. We then examined variability in AGB estimates derived from three models developed to estimate palm AGB. Finally, we applied our novel height:diameter allometric model to hindcast dynamics of P. acuminata in the Luquillo Forest Dynamics Plot during a 27-year period (1989–2016) of post-hurricane recovery. Overall, our study provides improved estimates of AGB in wet forests of Puerto Rico and will facilitate novel insights to the dynamics of palms in tropical forests

    Ontogenetic shifts in trait-mediated mechanisms of plant community assembly

    Get PDF
    Identifying the processes that maintain highly diverse plant communities remains a central goal in ecology. Species variation in growth and survival rates across ontogeny, represented by tree size classes and life history stage-specific niche partitioning, are potentially important mechanisms for promoting forest diversity. However, the role of ontogeny in mediating competitive dynamics and promoting functional diversity is not well understood, particular in high-diversity systems such as tropical forests. The interaction between interspecific functional trait variation and ontogenetic shifts in competitive dynamics may yield insights into the ecophysiological mechanisms promoting community diversity. We investigated how functional trait (seed size, maximum height, SLA, leaf N, and wood density) associations with growth, survival, and response to competing neighbors differ among seedlings and two size classes of trees in a subtropical rain forest in Puerto Rico. We used a hierarchical Bayes model of diameter growth and survival to infer trait relationships with ontogenetic change in competitive dynamics. Traits were more strongly associated with average growth and survival than with neighborhood interactions, and were highly consistent across ontogeny for most traits. The associations between trait values and tree responses to crowding by neighbors showed significant shifts as trees grew. Large trees exhibited greater growth as the difference in species trait values among neighbors increased, suggesting trait-associated niche partitioning was important for the largest size class. Our results identify potential axes of niche partitioning and performance-equalizing functional trade-offs across ontogeny, promoting species coexistence in this diverse forest community

    Shifts in wood anatomical traits after a major hurricane

    Get PDF
    •1. Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance. •2. To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre- and posthurricane periods. We also assessed correlations between traits and growth rates. •3. While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates. •4. Ultimately, within-individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances

    Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status

    Get PDF
    Arbuscular mycorrhizal (AM) fungi in the soil may influence tropical tree dynamics and forest succession. The mechanisms are poorly understood, because the functional characteristics and abundances of tree species and AM fungi are likely to be codependent. We used generalized joint attribute modeling to evaluate if AM fungi are associated with three forest community metrics for a sub-tropical montane forest in Puerto Rico. The metrics chosen to reflect changes during forest succession are: the abundance of seedlings of different successional status, the amount of foliar damage on seedlings of different successional status, and community-weighted mean functional trait values (adult specific leaf area (SLA), adult wood density, and seed mass). We used high-throughput DNA sequencing to identify fungal operational taxonomic units (OTUs) in the soil. Model predictions showed that seedlings of mid- and late-successional species had less leaf damage when the 12 most common AM fungi were abundant compared to when these fungi were absent. We also found that seedlings of mid-successional species were predicted to be more abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. In contrast, early-successional tree seedlings were predicted to be less abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. Finally, we showed that, among the 12 most common AM fungi, different AM fungi were correlated with functional trait characteristics of early- or late-successional species. Together, these results suggest that early-successional species might not rely as much as mid- and late-successional species on AM fungi, and AM fungi might accelerate forest succession
    • …
    corecore